
1

 

2

 

Using build tools 
Published by Five Simple Steps 

h!p://www.fivesimplesteps.com  
ISBN: 9781907828713

http://www.fivesimplesteps.com

3

Using build tools by Gavin Davies

Published in 2015 by Five Simple Steps 
119 St Mary Street  
Cardiff 
CF10 1DY 
United Kingdom

On the web: www.fivesimplesteps.com

Publisher: Five Simple Steps 
Copy Editor: Ary Lacerda  
Production Manager: Amie Lockwood  
Design: Valentino Cellupica 
Art Director: Craig Lockwood 
Copyright © 2015 Gavin Davies

All rights reserved. No part of this publication may be reproduced or transmi!ed in any

form or by any means, electronic or mechanical, including photocopy, recording or

any information storage and retrieval system, without prior permission in writing from

the publisher.

A catalogue record of this book is available from the British Library.

http://www.fivesimplesteps.com

4

Introduction

This book is aimed at designers who also do front end development. These days, it

seems that we all wear multiple hats in our jobs!

Since the turn of the century, web development has become far more sophisticated.

This has led to more complexity, and many of us are finding we have to work with

many new things. This can seem a li!le intimidating (I have certainly found myself

wishing that the pace of progress would slow down!).

To take advantage of this sophistication whilst reducing its complexity, front-end

developers use build tools. These tools allow us to work at a higher level and

automate away repetitive tasks, thereby saving time and producing more

sophisticated results. Automation streamlines our processes so that we can focus on

creative work, rather than spending hours lost in the weeds of tedious tasks.

In this short book, we will go through some of the build tools that are available, what

they can do for you, and how you can get started with them. I will refer to some

specific tools, but this book will not teach you the specifics of a particular build tool;

a#er all, each build tool is well documented online and in print already. Instead, this

book functions as a primer on what build tools are and how to assemble powerful,

efficient build workflows with them.

The goal of this book is that, once you have read it, you will be able to improve your

workflow by incorporating build tools. I aim to give you the confidence and knowledge

needed to dive into this world of powerful and flexible utilities, become more

productive, and enjoy your work more as a result.

5

Let’s talk about workflow

Workflow is the set of tasks that one goes through when doing a job. Everyone’s

workflow is different, and you might have multiple workflows for different aspects of

your role. We will look at web development workflow and how to optimise it.

Basic web development workflow

In developing websites and applications, you probably have phases that look

something like this:

 

Don’t worry if your workflow is different. I’ve just selected a number of common tasks;

the principles found in book will apply no ma!er what your workflow is.

There are a number of problems with this common, simplistic workflow:

 - File size - there is no minification of the assets or compression of

the images, so the application will perform slower than it ought.

 - Consistency - pushing to a server can be error prone: assets may be

cached, transfers can fail, etc.

 - Speed of workflow - pushing and refreshing manually is time

consuming and takes you out of the "zone" of your workflow.

6

Let’s add a few more tasks to this workflow to address these issues.

Creating an asset pipeline

To resolve the problems we have identified in the basic workflow, we can incorporate

compression, minification, and concatenation. Minification compresses code without

changing its functionality. Concatenation combines multiple files together into a

single file, improving download speeds. Let’s add these tasks to the process:

 

This approach, commonly known as the asset pipeline, takes assets from an input

area, transforms them, and delivers them to an output area. We will look at how to

structure and automate an asset pipeline.

A common convention is to have two separate directories in the root (top level) of your

project. The first is src, which contains source code - the files you edit. The second is

build, which contains files that are generated and delivered to the end user. You

never edit anything in build directly. The project’s specific location is not important,

but this book assumes that the project is saved in (OSX/Linux directory on top,

directory for Windows below):

 /home/user/myproject

C:\Users\user\myproject

In some projects, build may be called dist, which is short for "distribution".

Source directory:

7

 /home/user/myproject/src

C:\Users\user\myproject\src

Build directory

/home/user/myproject/build

C:\Users\user\myproject\build

Once build and src are separated, move any existing project files into the src

directory. These are the files that you will edit. Everything in build will be generated

using your build tool - we never edit files in build directly. Hands off!

It’s best to test something that’s as representative as possible of what the end-user will

receive. Therefore, it’s a good practice to test in build, not in src, so as to catch any

potential problems that the transformations might have introduced.

A full treatment of SCM (So#ware Configuration Management) is outside the scope of

this book, but I will make one suggestion: when using a version control tool like Git,

Mercurial, or Subversion, add the build directory to your SCM’s ignore file. You do

not want to commit anything in build - it’s considered volatile. In SCM, only the

source files are commi!ed to your SCM, and these generate the build. This keeps

commit logs clean and unclu!ered by the build assets.

To learn about Git, check out Version Control with Git by Ryan Taylor

Here is how the asset pipeline might look:

http://www.fivesimplesteps.com/products/version-control-with-git

8

 

Assuming that you have two javascript files, src/js/a.js and src/js/b.js, and

two CSS files, src/css/first.css and src/css/second.css, the build would

output build/js/all.min.js and build/css/all.min.css:

 

9

Because we have concatenated multiple assets into single files, we will have to

replace the references to the assets. In src/index.html, we have four such

references:

<head>

 <script src="/js/a.js"></script>

 <script src="/js/b.js"></script>

 <link rel="stylesheet" media="all" href="/css/
first.css">

 <link rel="stylesheet" media="all" href="/css/
second.css">

</head>

In build/index.html, this becomes just two references:

<head>

 <script src="/js/all.min.js">

 </script>

 <link rel="stylesheet" media="all" href="/css/
all.min.css">

</head>

At this point, the minified and concatenated assets, bundled up cleanly in the build

directory, are ready to be pushed to the server. There are some problems, though:

 - Isn’t this process unnecessarily complex?

 - How do we know if there are problems with the code?

 - How do we manage this process?

Here is where we introduce the wonderful world of build tools!

10

Automated workflows with

build tools

A build tool is so#ware that automates the transformation of source code into a

deliverable. Any time a change is made to the source code, the build tool should be

run - usually from the command line. The build tool is how we implement asset

pipelines:

 

Available build tools

There are many build tools available. This book focuses on the web and therefore

looks at those tailored to HTML, CSS, and JavaScript. Grunt and Gulp, the two most

popular, will be our focus because of their widespread adoption. There are many

11

others, such as Broccoli, Middleman and Brunch, but this book’s principles apply to all

build tools.

If your needs are simple, the package manager NPM can be used as a build tool - NPM

along with Browserify can be quite a powerful combination. See h!p://

blog.keithcirkel.co.uk/how-to-use-npm-as-a-build-tool/ for details.

The build file

The build file tells the build tool what to do. It defines a set of tasks that the build tool

can perform. In Grunt, this file is called Gruntfile.js. In Gulp, it is called

Gulpfile.js. As a rule, the build file goes at the root of the project, above the

build and src directories.

Source dir:

/home/user/myproject/src

C:\Users\user\myproject\src

Build dir:

/home/user/myproject/build

C:\Users\user\myproject\build

Build file (Gulp):

/home/user/myproject/Gulpfile.js

C:\Users\user\myproject\Gulpfile.js

Build file (Grunt):

/home/user/myproject/Gruntfile.js

C:\Users\user\myproject\Gruntfile.js

12

Tasks

Build tools run tasks. A task is simply an action or a set of actions that can be

performed. For example, a task could be "copy files from src to build".

In most build tools, tasks are composable, meaning that a task can depend on or

delegate to other tasks. For example, task copy-assets could depend on task

clean, so that whenever copy-assets is run, clean is automatically run

beforehand. The advantage of composability is that the code for the clean task won’t

be repeated every time you need to call it.

Tasks are stored inside the build file; here is an example of a build file that contains

some tasks:

13

 

Anatomy of a task

A task generally has these a!ributes:

Name:

The name of the task. Most tasks can be run in isolation by passing the task’s name to

the tool on the command line. For example, grunt clean or gulp clean would run

the clean task.

Description:

14

Some build tools supply an optional task description, an explanation of the task that

doubles as documentation for people on your team.

List of dependencies:

A list of tasks that must be run before a certain task can run. For example, the build

task may have clean as a dependency, meaning that if you call the build task, the

clean task automatically runs first.

 Functionality:

This is the specific code or configuration that you write to implement your task. For

example, the scripts task could minify and concatenate a set of files from src and

then copy them into build/js.

15

Creating your first build file

We will create a build file that automates the workflow that we have defined. I’m not

going to write the actual code here, as it will differ based for each build tool, but I will

represent it in an abstract manner.

These tasks will:

 - Clean the build directory

 - Compress and minify assets

 - Copy the transformed results into the build directory

Here is the order in which the tasks will run:

 

Some build tools can run tasks in parallel; others will run them one at a time in

sequence. In the diagram above, we have assumed that we can run scripts,

styles, images and html in parallel.

Explanation

Task clean - cleans out build directory

This simple task cleans out the build directory by deleting everything in it.

16

Task build - calls the subtasks

Depends on task clean via the dependency mechanism discussed earlier, so when

build is called, it first triggers clean. A#er clean completes, the build task

delegates to the scripts, styles, images and html tasks.

Task scripts - transforms javascript

Takes src/js/a.js and src/js/b.js, minifies them, then concatenates them into

build/js/all.min.js.

Task styles - transforms CSS

Takes src/css/first.css and src/css/second.css, minifies them, then

concatenates them into build/css/all.min.css. For designers writing in Sass or

LESS, styles will also compile those files into CSS before minification and

concatenation.

Task images - compresses images

Takes the images in src/img, compresses them, and outputs them to build/img.

Task html - transforms HTML

Takes src/html/index.html and minifies it. It then modifies the HTML, directing

the asset paths to build, not src. The output is then directed to build/html/
index.html.

Once the build task completes, you have your complete website, ready for use in the

build directory.

Plugins

For each task, there is an installable plugin for your build tool. This is great because it

means you usually have to write very li!le code.

The Gulp team maintains a list of verified plugins and their community ensures that

there is only one plugin for each task. In contrast, the Grunt community o#en offers a

number of alternatives for each plugin. The grunt-contrib-* plugins are the best

starting point because they are officially maintained.

17

The specifics of how to install and use these plugins are beyond the scope of this

book.

Look over the sample project for this book at h!ps://github.com/gavD/5ss-build-tools.

There, you will find example build files for Grunt and Gulp that follow this approach.

https://github.com/gavD/5ss-build-tools

18

Automating your workflow

At this point, the areas in green are automated:

 

Design and editing source code in src isn’t automatable - if it were, robots would be

doing our jobs. Therefore, we will omit these workflow stages from the future

diagrams. The rest of these tasks, however, we can use build tools for.

Task watch - automating your automation

Right now, you are probably running the tool on the command line every time you

make a change. This is pre!y laborious, and also error prone - chances are you will

make a change, forget to run the tool, reload the browser, and be confused as to why

your changes aren’t showing up… I know I’ve certainly done that!

Thankfully, we can automate this. We will create a new task, watch, which will monitor

the src directory, and whenever anything changes in there, it automatically runs the

default task, which has the build task as a dependency:

19

 

Now, the build tool runs automatically when anything changes in src, so that any time

you update your source code, the website is regenerated automatically. This

automates the build:

 

Task serve - run a local server

Instead of constantly pushing code up to a web server, build tools allow you to run a

server locally, which serves the build directory, so you’re seeing the compressed,

minified, concatenated versions of files, just like your users will. This means that we

can remove the "Push to server" stage of the workflow entirely:

20

 

Don’t worry if you were hoping to cover deployment in your build workflow; we will talk

about deployment later.

Task refresh-browser: refresh your

browser

One task that we spend a lot of time doing is making changes, then going over to a

browser and reloading the page. A LiveReload will ensure that when a build occurs in

response to a change to src, not only is the build task called, but also the browser is

automatically reloaded:

 

We’ve now automated a huge amount of the workflow:

21

 

What do we use to write these tasks?

watch

 Gulp plugin: gulp-watch

 Grunt plugin: grunt-contrib-watch

serve

Gulp plugin: gulp-connect

Grunt plugin: grunt-contrib-connect

refresh-browser

Gulp plugin: gulp-livereload

Grunt plugin: grunt-contrib-livereload

22

Finished build file

We end up with a set of tasks that we can run. Here are the "top level" tasks, i.e., the

ones that we will commonly call from the command line:

Task name: default  
Dependencies: build  
Description: Default task so that when your build tool is called with no parameters, it

simply delegates to the build task.

Task name: build  
Dependencies: clean , scripts, styles, images, html  
Description: Minifies, concatenates, and compresses assets, then moves the

compressed versions into the build directory.

Task name: watch 
Dependencies: live-reload, serve 
Description: Launches the local server, which serves the build directory. Watches

the src directory. Any change to any file inside src will trigger the default task.

This is the task you will run when you are working on your project, and it will whirr

away in the background keeping everything up to date for you.

23

What else can build tools

do for us?

We’ve automated the workflow that we defined earlier, but build tools can do lots

more. Here are a few examples.

Linting

Linting, also known as static analysis, is the automated inspection of your source code

(files in src). Think of it as having a more experienced colleague checking your work

and making sure that you haven’t made any common mistakes.

JavaScript can be automatically checked using a tool called jshint. This can check

for common performance, security, and stylistic problems. Following the

recommendations of jshint makes your code standards-compliant, and protects

you from common clangers.

Similarly, CSS can be linted using tools like csslint. This can help you to

automatically detect whether you’ve used invalid or deprecated rules. It can also help

you to make more efficient CSS that the browser can use without friction.

HTML can also be linted!

I generally recommend obeying every recommendation that linters make - as

legendary programmer John Carmack once put it, "If you have to explain it to the

computer, you’ll probably have to explain it to your colleagues."

All linters can be "tuned" to your specific needs - for example, if you are breaking one

rule for a good reason, then you can tell your linter to ignore it.

Here are some example tools you could use:

Lint css

Gulp plugin: gulp-csslint

Grunt plugin: grunt-contrib-csslint

Lint javascript

Gulp plugin: gulp-jshint

24

Grunt plugin: grunt-contrib-jshint

Verify html

Gulp plugin: gulp-htmlhint

Grunt plugin: grunt-htmlhint

CSS preprocessing

CSS is great but it’s fiddly. A preprocessor makes CSS far easier to work with. I use

LESS day-to-day, but there are many others, including Sass and Stylus. All

preprocessors add features like variables, mixins, and so forth, which greatly reduce

the amount of code you need to write and make it far easier to maintain.

Using a preprocessor, the styles task can transform styles into raw CSS. This means

that you would never need to edit raw CSS; you could work entirely in the far more

pleasant world of LESS (or whichever you prefer).

LESS to CSS

Gulp plugin: gulp-less

Grunt plugin: grunt-contrib-less

Script preprocessing (transpiling)

Instead of plain JavaScript, you might be using something like CoffeeScript. You would

need a transpiling stage, which converts from CoffeeScript into JavaScript.

You might also be using a more cu!ing-edge version of JavaScript than is available in

current web browsers. At the time of writing, ES6 is a forthcoming version of JavaScript

that is not available for general usage in many web browsers. Therefore, we can use

tools to transpile it into ES5.

Once you have these tools in your workflow, you would have your CoffeeScript or ES6

code in src, and standard ES5 code in build. It makes debugging a li!le more

difficult, but it can be worth it if you want to use cu!ing edge features.

CoffeeScript transpiler

Gulp plugin: gulp-coffee

Grunt plugin: grunt-contrib-coffee

ES6 transpiler

25

Gulp plugin: gulp-babel

Grunt plugin: grunt-babel

Push to server

Build tools can even be used for deployment. There are all sorts of options here and it

is out of our scope to cover them in detail, so here are a few examples:

FTP

Gulp plugin: gulp-ftp

Grunt plugin: grunt-ftp-deploy

Github pages

Gulp plugin: gulp-git-pages

Grunt plugin: grunt-gh-pages

rsync

Gulp plugin: gulp-rsync

Grunt plugin: grunt-rsync

26

Best practice

Generally, you can use a build tool for any automation task. As with any so#ware, build

tools are open to misuse, however, so here are some guidelines to help you to make

sure you are using the build tool as it was intended.

Never edit anything in the build directory

You should never manually edit anything in the build directory. Similarly, your build

tool should never modify anything in the src directory.

If there is anything that you have to do in the build directory, you can almost certainly

find a way to get the tool to do it for you.

Never let your build tool modify anything in

the src directory

Conversely, if your build tool modifies your src directory, you are going to have a bad

time. Such behaviour breaks the "pipeline" approach and can create circular actions

that never fully resolve. Therefore, you need to be confident that your build tool will

stay out of the src directory entirely.

Think of it like this: src is yours, build belongs to your build tool.

Your normal workflow should be

encapsulated by a single task

You shouldn’t need to be constantly running a bunch of separate tasks. Instead, one

task should rely upon or kick off the subtasks that it needs. Generally, you should use

some kind of watch and run it in the background. As you do your normal work, it will

detect changes, and then run everything it needs to.

27

If you’re finding yourself constantly having to stop your watch task and run things,

then consider pu!ing them into your main (default) task.

Short, sharp, composable tasks

Whilst you CAN create tasks that are huge and have a large amount of code, it is

usually be!er to separate these into smaller tasks and compose them using task

dependencies.

Have tasks that aren’t part of your main

workflow as separate tasks

Conversely, for tasks that aren’t part of your regular workflow, don’t have the main

workflow call them.

For example, you don’t want to deploy every tiny li!le tinker you make in your local

workspace. Therefore, you might have a task like deploy that you only call once

you’ve done all of your testing and you’re confident that it’s time to go live.

Don’t store credentials in plain text

Speaking of deployments, it might be tempting to store things like passwords or

authentication tokens in your build file. This is generally a bad move from a security

perspective - if someone accesses your build file, they could compromise your live

systems.

A full treatment of security issues is outside of the scope of this book, but suffice to

say, don’t store credentials in plain text and certainly don’t keep them directly in your

build file.

Debugging with source maps

If you have "compiled" (minified, concatenated) JavaScript code in build, it will look

different to your code in src. It will have had whitespace removed, variable names

shortened - all sorts of changes that make it hard to debug. You can use a source map

to help you here. A source map holds information about your original source files.

Browsers like Chrome and Firefox support source maps, and enable you to debug as if

28

you were using your original code. This is really handy as it means you are testing the

same code the user would receive, but debugging it in its original form.

Similarly, with a CSS preprocessor like LESS or SaSS, the CSS in build is different to

the CSS in src. LESS and SaSS support source maps as well, so you can use the same

approach.

Being idiomatic

Try to ensure that your project is idiomatic. By that, I mean that you should follow the

conventions that other people use for similar projects. This has the following benefits:

 - Easier to apply code snippets you find online

 - Easier to explain to people than some bespoke system

 - The wheel remains un-reinvented!

There are a couple of ways you could go about this. Firstly, you could clone an existing

repository and modify it to suit your needs. Feel free to clone the sample source code

for this book from h!ps://github.com/gavD/5ss-build-tools.

The second option is to use a scaffolding tool. These are tools that create a "skeleton"

project for your app that has the tools you will need installed and ready to use. So, you

don’t have to create the build and src directories, and you don’t have to create your

build file - your scaffolding tool does it all for you. Handy!

If you’re starting with a brand-new app, Yeoman is a great scaffolding tool that uses

generators to get you up and running with a project structure. It supports a huge range

of project types. For example, are you building an AngularJS app? Then use the

yeoman angular generator! Working on a PhoneGap project? Then use the yeoman

phonegap generator! No ma!er what you are building, there is likely to be a Yeoman

generator that can help you to get started.

See also: Browserify

Check out Browserify. It’s not a build tool as such, but it offers a nice minimalist

approach to the JavaScript asset pipeline.

https://github.com/gavD/5ss-build-tools
http://yeoman.io

29

Go forth and build!

In this book, we started out by looking at common web development workflows. We

then went on to look at how we can improve upon that workflow. We then took a

detailed look at what a build tool is, what a build file is, and what tasks are. We then

went through creating some tasks to automate the workflow.

Thanks for reading, I hope that this book has been a useful introduction to the

wonderful world of build tools!

30

Further reading

 - James Cryer’s Pro Grunt.js

 - Travis Maynard’s Ge!ing Started with Gulp

http://www.amazon.co.uk/Pro-Grunt-js-James-Cryer/dp/1484200144
http://www.amazon.co.uk/Getting-Started-Gulp-Travis-Maynard/dp/1784395765/ref=sr_1_1?ie=UTF8&qid=1438036888&sr=8-1&keywords=getting+started+gulp

31

Thanks

Many thanks to the following proof readers for valuable insights and corrections:

 - Nate Abele

 - Andrew Canham

 - Kathryn Davies

 - Ary Lacerda

 - John Mercer

